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Abstract. We develop a learning-based testing framework for register
automaton models that can express the windowing behavior of TCP,
thereby presenting the first significant application of register automata
learning to realistic software for a class of automata with Boolean-arithmetic
constraints over data values. We have applied our framework to TCP im-
plementations belonging to different operating systems and have found a
violation of the TCP specification in Linux and Windows. The violation
has been confirmed by Linux developers.

1 Introduction

Automata provide both formal and intuitive means of specifying the behavior
for a wide range of applications, in particular network protocols. Unfortunately,
protocol specifications often are textual and rarely include state machine models.
Without such models, it is difficult to test if an application behaves as expected.
Manual construction of models is a laborious and error-prone process and models
become outdated as soon as the specification changes. Learning-based testing,
as sketched in Figure 1, alleviates this problem by generating models while test-
ing a system. These models cannot serve as specifications but can be used to
check desired properties, which are usually easier to formalize and maintain than
complete behavioral models.

Integrating model learning, model-based testing, and model checking allows
a tester to automatically obtain a model for a system under test. For a set of test
inputs, model learning runs a series of tests on the system until, eventually, it
will produce a conjectured model of the system’s behavior. This model is used as
the basis for model-based testing. Testing can discover counterexamples, which
indicate incorectness of the model. In such case, model learning is restarted,
being provided with the counterexample. Once no counterexample is found, the
model can be used for checking properties. The output of learning-based testing
is threefold: model learning produces a conformance test suite for the model [4],
checking of properties can produce examples that document the violation of a
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Fig. 1: Learning-based Testing with Additional Checking of Properties.

specification, and in case no violation is found, testing can yields a conformance
guarantee.

In order to instantiate learning-based testing for a certain class of models,
one needs a learning algorithm and a testing algorithm for this class of models.
In this paper, we present a learning-based testing framework for a class of regis-
ter automata that can express the windowing behavior of TCP. Our framework
utilizes the SL∗ learning algorithm for register automata [6] and a random walk
testing algorithm for such register automaton models. The testing algorithm
ensures approximate correctness of models with a high confidence. We manu-
ally inspect models and find a violation of the TCP specification in Linux and
Windows implementations.

Our work is the first significant application of register automata learning to
realistic software for a class of automata with Boolean-arithmetic constraints
over data values. Our results show that, on the one hand, learning more ex-
pressive models can ease the burden of manually constructed sophisticated test
harnesses. On the other hand, experiments show that model learning for more
expressive models is very expensive. Future work will focus on scaling learning-
based testing to industrial applications as well as on integrating automated
model checking into our approach.

Related Work. Learning-based testing in the form that we present here is based
on the observation that model learning and model-based testing are merely two
sides of the same coin [16]. The term has been introduced in [12] for a combina-
tion of model learning, model checking, and random testing. In contrast to our
work, the approach is based on finite state models. On the other hand, model
checking is automated and feed the model learning algorithm with counterex-
amples, leading to higher degree of automation.

Learning-based techniques have been steadily gaining traction for more than
a decade, after pioneering work on learning and testing CTI systems [10] and
learning and checking systems [13]. Previous applications of learning-based test-
ing or checking have lead to the discovery of flaws in TLS implementations [15]
and of various forms of specification non-compliance in TCP [7, 8] and SSH [9]
implementations. What all these case studies have in common, is the difficulty
of manually constructing a sophisticated test harness for the system. This is in
large part caused by the need to abstract away from system functionality, so
that the functionality seen by the learner fits within the less expressive formal-
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Fig. 2: TCP handshake, connection closure, and data transfer with re-
transmission. Labels show flags, sequence and acknoweldgement numbers. 1 byte
of payload marked by (X). Initial Sequence Numbers marked by (ISN).

ism the learner can infer, typically mealy machines or DFAs. Our learning setup
can infer more expressive register automata, and requires no form of abstraction
other than a general one for handling fresh values.

Outline. We provide a brief introduction to TCP in the next section before
presenting our learning-based testing framework in Section 3. We discuss ap-
plication of our framework on real TCP implementations in Section 4, before
concluding in Section 5.

2 The Sliding Window Behavior of TCP

The Transport Control Protocol (TCP) is a widely used transport layer protocol
of the TCP/IP stack, with implementations provided by all operating systems.
TCP ensures reliable data transfer between parties. In order to communicate, a
TCP client and server application must first establish a TCP connection, which
is done by way of a handshake. They can then exchange data over the established
connection until one of the parties decides to terminate the connection. A closure
procedure ensues, which ultimately removes the connection. In all stages of the
protocol, interaction is done by exchanging TCP segments. These segments are
often the result of calls on the socket interface, which is available to each side and
provides access to TCP services. Moreover, each side keeps track of the state of
the connection. TCP uses sequence numbers and a sliding receive window to keep
track of which segments have been received and acknowledged by the other party.
This helps compensate for a potentially lossy communication channel in which
reordering of segments can occur (e.g., due to changing routing of segments).

For the sake of exposition, let us assume a setting in which all segments are 1
byte in size. As sequence numbers encode the relative position of a segment in a
byte stream, this assumption allows us to confuse the relative position segment
in a sequence of segments with its position in a byte stream.

Sequence Numbers. To achieve reliable data transfer, TCP uses sequence
and acknowledgement numbers, and flags which are included in the header of all
TCP segments. In a stream of segments from a sender to a receiver, the sequence
number encodes the relative number of a segment in such a stream. The receiver
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Fig. 3: Relevant Relations of Sequence Numbers in TCP.

acknowledges a received segment by responding with a segment including as ac-
knowledgement number the next expected sequence number. Sequence numbers
are generated relative to an Initial Sequence Number (ISN), so the first segment
has sequence number ISN, the second ISN+1... As data is sent, the sequence
number increases, as does the acknowledgement number in responses.

Receive Window. Segments received with a sequence number greater than the
one expected fall in two categories: those whose sequence number falls within a
receive window of that expected and those whose sequence number falls outside
of the receive window. The former should be processed by the receiver, the
latter should be treated as invalid. As a concrete example, only reset segments
(segments with the RST flag enabled) with the sequence number within the
receive window are processed, and may reset the connection, those whose number
lies outside should be ignored. The receive window is included in the TCP header
and its value is communicated in each TCP segment a side sends.

Sliding Windows. Once a received segment is successfully processed, the re-
ceive window can be moved forward: if a sequence number of a received segment
is equal to the sequence number expected, the expected sequence number is in-
creased. If not equal, the expected sequence number is left unchanged. Acknowl-
edgement numbers are also checked. Those equal to the last sequence number
sent acknowledge all segments up to this last one. Those greater are unaccept-
able as they acknowledge segments not yet sent. Those smaller than the last
sequence number sent are old acknowledgements. Segments with unacceptable
or old acknowledgement numbers are generally discarded.

As stated above, sequence numbers and receive windows are used, among other
things, to deal with reordering of routed segments and to prevent the process-
ing of (bytes in) old segments, which are segments carrying already seen data
with sequence numbers smaller than the those expected. Old segments are often
the result of re-transmissions, which happen when a timeout for receiving an
acknowledgement has expired. TCP is full duplex, which means communicating
sides maintain two byte streams, one for each direction. Each side keeps track of
the next sequence number to be sent, as well as the sequence number expected
from the other side. To open (via handshake), maintain and close the two byte
streams, TCP uses control flags. The SYN flag, for example, marks the beginning
of a byte stream, whereas the FIN flag marks the end. Figure 2 gives sequence
diagrams for typical TCP scenarios.
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The description so far assumed that all segments were 1 byte in size. In
actuality, the size of a segment is the size of the payload carried, plus 1 if either
SYN or FIN flags are enabled, or 0 otherwise. We restrict the learning setting to
one where segments carry no payload (thus segments are either of size 0 or 1).

Figure 3 depicts the relevant relations sequence numbers may have relative
to a current sequence number, in line with our earlier description. These rela-
tions are equality and inequality over the current sequence number, and over
its summation to one (for segments including either FIN or SYN), and to the
receive window size.

3 Instantiating Learning-based Testing for TCP

In order to apply learning-based testing to the windowing behavior of TCP, we
instantiate the components of the framework that were sketched in Section 1.
We use the SL∗ active learning algorithm for learning register automaton mod-
els [6]. Active learning algorithms rely on the existence of a minimally adequate
teacher (cf. [3]) that answers two kinds of queries for the learning algorithm:
output queries (i.e., execution of tests) and equivalence queries. The learning
algorithm submits a conjectured model to an equivalence oracle and expects a
counterexample to the model (if one exists). In our scenario, we implement this
oracle by performing model-based testing on the model.

The SL∗ algorithm additionally assumes the existence of a tree oracle. A
tree oracle produces register automata fragments that encode the relevant data
relations for a sequence of actions on a SUT. The resulting setup is shown in
Figure 4. In order to infer symbolic transitions, e.g., for input ACK(p1, p2) with
two data parameters p1 and p2 from a state that is reached in the protocol by
sending a message SY N(10, 0) and receiving message SY N +ACK(20, 11), the
SL∗ algorithm will perform a tree query for prefix SY N(10, 0) and suffix ACK.
The tree oracle will generate output queries for all relevant concrete instances
of ACK messages capturing possible relations between values of p1, p2 and
data values in the prefix (e.g., equality, being a sequence number, or being in a
window). The determinizer component will test if output queries are valid traces
of a TCP implementation by exchanging actual TCP packages with a system
under testing (SUT). The tree oracle encodes the observed behavior and relevant
relations as a symbolic decision tree.

In the remainder of this section, we present register automata for the win-
dowing behavior of TCP, tree queries that capture all relevant data relations,
and use the presented ideas as a basis for instantiating model-based testing in
our framework.
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3.1 Register Automata

We assume a set Σ of actions, each with an arity that determines how many
values from N it takes as parameters (e.g., ACK takes two data values). To
simplify presentation, we assume that all actions have arity 1, but it is straight-
forward to extend to the case where actions have arbitrary arity. A data symbol
is a term of form α(d), where α is an action and d ∈ N is a data value. A data
word is a sequence of data symbols. The concatenation of two data words w and
w′ is denoted ww′. In this context, we often refer to w as a prefix and w′ as a
suffix. For a data word w = α1(d1) . . . αn(dn), let Acts(w) denote its sequence
of actions α1 . . . αn, and V als(w) its sequence of data values d1 . . . dn. Let |w|
denote the number of symbols in w.

While there are infinitely many data words for every sequence of actions with
data parameters, many of these data words are equivalent when considering only
relations between data values (e.g., equality, being a sequence number, or being
in a window). For a set of relationsR, data words w = α1(d1) . . . αn(dn) and w′ =
α1(d′1) . . . αn(d′n) are R-indistinguishable, denoted w ≈R w′, if R(di1 , . . . , dij ) iff
R(d′i1 , . . . , d

′
ij

) whenever R is a relation in R and i1, · · · , ij are indices among

1 . . . n. We use [w]R to denote the set of words that are R-indistinguishable from
w. A data language L is a set of data words that respects R in the sense that
w ≈R w′ implies w ∈ L ↔ w′ ∈ L.

In order to capture the windowing behavior of TCP, we define the set of
relations R = {R⊗,c : ⊗ ∈ {<,≤,=,≥, >} ∧ c ∈ {0, 1, 100}}, and relation
R⊗,c ⊂ N×N such that xR⊗,cy iff x+ c⊗y. Relations R⊗,0 encode equality and
an order on the sets of sequence numbers. Relations in R⊗,1 encode the successor
relation between sequence numbers and R⊗,100 describes windows (of size 100).

We assume a set of registers x1, x2, . . . that can store data values of data
words. A parameterized symbol is a term of form α(p), where α is an action and p
a formal parameter. An atomic guard g over p is a logic formula of form (xi+c⊗p)
with ⊗ ∈ {<,≤,=,≥, >} and c ∈ {0, 1, 100}. We allow for aggregation of atomic
guards into intervals of form (g1 ∧ g2), where atomic guards g1 and g2 specify a
lower and an upper bound on p, respectively. A valuation ν : {p, x1, x2, . . .} 7→ N
satisfies a guard g if g[ν] = g[ν(p)/p][ν(x1)/x1][. . .] is true and we write ν |= g
in this case.

An assignment is a simple parallel update of registers with values from reg-
isters or the formal parameter p. We represent an assignment which updates the
registers xi1 , . . . , xim with values from the registers xj1 , . . . , xjn or p as a map-
ping π from {xi1 , . . . , xim} to {xj1 , . . . , xjn}∪{p}, meaning that the value of the
register or parameter π(xik) is assigned to the register xik , for k = 1, . . . ,m.

Definition 1 (Register automaton). A register automaton (RA) is a tuple
A = (L, l0,X , Γ, λ), where

– L is a finite set of locations, with l0 ∈ L as the initial location,
– X maps each location l ∈ L to a finite set X (l) of registers, and
– Γ is a finite set of transitions, each of form 〈l, α(p), g, π, l′〉, where
• l ∈ L is a source location,
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Fig. 5: Potential (left), maximally refined (u, v̂)-tree (center), and canonic guards
(right) for u with νu = {x1 7→ 1, x2 7→ 2} and v̂ with |v̂| = 1. Actions omitted.

• l′ ∈ L is a target location,

• α(p) is a parameterized symbol,

• g is a guard over p and X (l), and

• π (the assignment) is a mapping from X (l′) to X (l) ∪ {p}, and

– λ maps each l ∈ L to {+,−}. ut

We require register automata to have no initial registers (i.e., X (l0) = ∅) and to
be completely specified in the sense that for each location l ∈ L and action α,
the disjunction of the guards on the α-transitions from l is equivalent to true.

RA Semantics Let us formalize the semantics of RAs. A state of an RA A =
(L, l0,X , Γ, λ) is a pair 〈l, ν〉 where l ∈ L and ν is a valuation over X (l), i.e.,

a mapping from X (l) to D. A step of A, denoted 〈l, ν〉 α(d)−−−→ 〈l′, ν′〉, transfers
A from 〈l, ν〉 to 〈l′, ν′〉 on input of the data symbol α(d) if there is a transition
〈l, α(p), g, π, l′〉 ∈ Γ with

– ν |= g[d/p], i.e., d satisfies the guard g under the valuation ν, and

– ν′ is the updated valuation with ν′(xi) = ν(xj) if π(xi) = xj , otherwise
ν′(xi) = d if π(xi) = p.

A run of A over a data word w = α(d1) . . . α(dn) is a sequence of steps of A

〈l0, ν0〉
α1(d1)−−−−→ 〈l1, ν1〉 . . . 〈ln−1, νn−1〉

αn(dn)−−−−→ 〈ln, νn〉

for some initial valuation ν0. The run is accepting if λ(ln) = + and rejecting if
λ(ln) = −. The word w is accepted (rejected) by A under ν0 if A has an accepting
(rejecting) run over w which starts in 〈l0, ν0〉. An RA is determinate if there is
no data word over which it has both accepting and rejecting runs. In this case we
interpret an RA A as a mapping from the set of data words to {+,−}, where +
stands for accept and − for reject. When using register automata as models
for reactive system, we refine the set of actions into inputs and outputs (cf. [5]).
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3.2 Tree Queries

For a data language L, a data word u with V als(u) = d1, . . . , dk, and a set V of
sequences of actions (so-called abstract suffixes), a (u, V )-tree is a decision tree
(a tree-shaped RA) T = (L, l0,X , Γ, λ) with root l0 and X (l0) ⊆ {x1, . . . , xk}
that (1) has runs over exactly all data words v with Acts(v) ∈ V and that (2)
accepts a data word v from 〈l0, νu〉 iff uv ∈ L. Please note, that we do not
require X (l0) to be empty for decision trees and let νu such that νu(xi) = di for
xi ∈ X (l0) and di the i-th data value of u.

A tree oracle for L is a function O that for any prefix u and set of abstract
suffixes V constructs a (u, V )-tree O(u, V ). The SL∗ algorithm combines multi-
ple symbolic decision trees (SDTs) into a conjectured model. We can implement
a tree oracle by starting with a maximally refined symbolic decision tree that has
one unique sequence of transitions for every R-indistinguishable class of words
[uv]R with Acts(v) ∈ V and then compute a more concise tree by iteratively
merging equivalent subtrees.

Maximally refined SDTs. For simplicity, we describe the generation of a maxi-
mally refined symbolic decision tree for a prefix u and a single abstract suffix v̂.
This allows us to omit actions from the presentation. For |V als(u)| = k, the po-
tential of u is the set of terms (xi+ c) with 1 ≤ i ≤ k and c ∈ {0, 1, 100}that can
appear in guards after u. The valuation νu (with νu(xi) = di for di ∈ V als(u))
induces an order on the terms in the potential. An example of this order is shown
on the left of Figure 5 for a word u with two data values.

Omitting the trivial case of the empty sequence, let |v̂| = 1 for the moment.
We generate guards for cases p smaller than the smallest term in the potential
of u, p equal to one of the terms, p in the interval between two successive terms,
and p greater than any term in the potential of u. These guards are maximally
refined: each (satisfiable) guard describes one class [uv]R of R-indistinguishable
words. We instantiate each guard with the help of a constraint solver and use
an output query to determine if uv ∈ L. Figure 5 (middle) exemplifies the
construction. As indicated by gray lines on the left of the figure, some terms in
the potential are equal. For these cases we pick one of the equal terms as the
basis for guards. Gray colored guards cannot be instantiated and are omitted.

In the general case of |v̂| > 1, we apply the above technique iteratively, gen-
erating sequences of guards and transitions for the parameters of v̂. We maintain
data values of the suffix symbolically during sequence generation and only in-
stantiate complete sequences of guards. The approach scales to sets of suffix
sequences as we construct maximally refined paths: paths of suffixes with com-
mon prefixes will have common guards for those prefixes and can be expressed
as trees.

Maximally abstract SDTs and Monotonicity. In order to guarantee convergence
of learning on a canonical automaton, the SL∗ makes some monotonicity re-
quirements on tree oracles [6]. For growing sets of abstract suffixes V, V ′, . . .
with V ⊂ V ′, it has to be shown that O(u, V ′) refines O(u, V ) by only adding
registers to X (l0), and only refining guards of transitions. Additionally, if de-
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cision trees O(u, V ) and O(u′, V ) cannot be made equal under some renaming
of registers from X (l0) in one tree, trees O(u, V ′) and O(u′, V ′) cannot become
equal either by such a renaming. These conditions trivially hold on maximally
refined SDTs. Unfortunately, however, maximally refined SDTs do not lead to
finite models during learning as the shape of a tree depends on the length of the
prefix. We transform maximally refined SDTs into more abstract trees by merg-
ing transitions and equivalent sub-trees (akin to BDD minimization), thereby
hiding irrelevant structural differences between trees.

The essential idea is that two (u, V )-trees T and T ′ are semantically equiv-
alent after u, denoted by T ≡u T ′, if both trees accept the same set of suffixes
under initial valuation νu with νu(xi) = di for di ∈ V als(u). We can check
semantic equivalence with finitely many test runs (i.e., one for each path in a
maximally refined SDT for V ). Let now l be a location in T with outgoing tran-
sitions to la and lb, guarded by ga and gb, respectively, as sketched in Figure 6.
For some new guard gab, equivalent to (ga ∨ gb), we construct T ′ from T w.l.o.g.
by removing the transition from l to la and the sub-tree rooted at la. On the
transition from l to lb, we replace gb by gab (cf. right part of the figure). We
abstract ga and gb into gab if T ≡u T ′.

In order to arrive at a canonical representation, we perform merging in a fixed
order: we always merge guards for the smallest possible terms with respect to the
order on the potential (cf. maximally refined trees). This ensures that merging
always results in intervals. An example is shown on the right of Figure 5. Merged
guards are obtained from top (smaller terms) to bottom (greater terms).

Our semantic merging process satisfies all three requirements: Adding more
suffixes (and hence paths) cannot lead to merging subtrees that could not be
merged before. Guards are refined into finer intervals. Since the original bound-
aries will be maintained, monotonic growth of registers follows. Finally, since
abstract trees are semantically equivalent to maximally refined trees, differences
between trees are preserved when adding suffixes.

Output queries observe the behavior of the SUT on a sequence of test inputs.
In learning-based testing, these queries are computed by executing tests on the
actual system under test.

Testing has to be done in an adaptive fashion, synchronizing data values that
are used in test inputs by the learning algorithm and those used in actual tests
as the SUT may introduce new sequence numbers during tests. As an example,
the learning algorithm may assume to receive a message SY N + ACK with
(new) sequence number 1. Then, in the actual communication the SUT sends a
random new sequence number.
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To tackle this problem, the work [2] introduces a determinizer component,
placed between the learner and the SUT. This component provides the learner
with a deterministic, or ’neat’ view of the SUT, by constructing and applying a
1 to 1 mapping from regular values to neat values. This mapping transforms all
relation equivalent traces (input/output sequences) encountered to a single neat
trace. The learner then infers the SUT only in terms of its neat traces.

Output Queries.
We extend the determinizer concept to a setting with inequalities and sums.

Our definition focuses on data values and ignores actions, which are invariant
under mapping. The determinizer is the mapper D = 〈R, r0, δi, δo, λi, λo〉 over
states R = {r ⊆ N×N | r finite and one-to-one} with initial state r0 = ∅. Value
transformations (λ) and mapper updates (δ) are defined for c ∈ 0, 1, 100 and
x, y, n,m ∈ N as follows.

λi(r, n) =


x+ c if m+ c = n for some (x,m) ∈ r
smaller(dom(r)) if m+ c > n for all (·,m) ∈ r
fresh(dom(r)) if m+ c < n for all (·,m) ∈ r
(x+ y)/2 else; for (x− c1,ml − c1), (y − c2,mu − c2) ∈ r

s.t. (ml < n < mu) and (mu −ml) minimal

λo(r, x) =

{
n+ c if y + c = x for some (y, n) ∈ r
fresh(ran(r)) otherwise

δi(r, n) =

{
r if (·, n) ∈ r
r ∪ { (λi(r, n), n) } otherwise

δo(r, x) =

{
r if (x, ·) ∈ r
r ∪ { (x, λo(r, x)) } otherwise

There, dom and ran denote domain and image of a function. Functions
fresh : N∗ → N and smaller : N∗ → N generate fresh values and smaller values.
For X ⊂ N we use the concrete functions fresh(X) := (bmax(X))÷ suc+ 1)× su
and smaller(X) := (bmin(X) ÷ slc − 1) × sl. Step sizes su and sl are fixed big
enough to avoid collisions (accidental relations between data values) during ex-
periments.

Figure 7 shows an example application of the mapper, producing a neat
trace from Figure 2. Whenever the system generates an output, the determinizer
processes it by replacing the output values with neat values before delivering the
output to the learner. Conversely, on generating a concrete input, the learner
passes it to the determinizer which replaces neat input values with regular values,
and sends the resulting input to the SUT. Every time it processes a value, the
determinizer updates its state.
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3.3 Model-based Testing

We instantiate the testing part of our framework with a relative simple adapta-
tion of a random algorithm to the scenario of register automaton models. For
a register automaton model A, each test run begins by traversing the model to
a randomly selected location of A and is continued by a random sequence of
inputs until either a discrepancy is discovered between model and system under
test, or until the run terminates and a new run starts.

Our extension consists in selecting data values for inputs. For a run with
current prefix w and next input α, we use the machinery introduced above (the
potential of a word, and symbolic guards that describe classes [wα(d)]R of data
words) as a basis for computing a pool of data values for α. The pool contains
one data value d for each R-indistinguishable class [wα(d)]R of data words. We
add a bias to the selection of data values, so that values in or related to those
stored in registers in A after running over w are more likely to be picked.

We can easily obtain a PAC-inspired conformance guarantee (cf. [17]) with
this testing method for the probability distribution on the set of data words
induced by a model A and the above strategy for selecting tests. With respect
to this distribution, A is an ε-approximation of SUT if

∑
w∈S Pr(w) ≤ ε for the

symmetric difference S of sets of words accepted by A and SUT. The probability
of A not being an ε-approximation of the SUT after performing k independent
test runs is at most (1 − ε)k. For some confidence value δ, we simply choose k
such that (1− ε)k < δ (i.e., such that k > ln(δ)/ln(1− ε).

4 Testing TCP Implementations

We have implemented the theories introduced earlier into RaLib [5]. We then
set up an experimental setup through which we could connect RaLib to various
TCP clients. RaLib inferred models, which we checked manually for conformance
with the specification.

4.1 Experimental Setup

The experimental setup used to learn TCP is similar to the setup used in [7]
and [8]. As in those works, the alphabet used to learn TCP defines two types of
inputs. The first type is packet inputs, used to describe TCP segments sent to
the system. These inputs are parameterized by TCP flag combinations, sequence
and acknowledgement numbers. The second type of inputs is socket inputs such
as connect and close, referring to the methods defined by the socket interface.
Outputs defined are packet outputs, which bear the same structure as packet in-
puts and describe TCP segments generated by the system, and timeouts, which
suggest that no output was generated by the system. For model learning, we use
the SL∗ algorithm with the theory and optimizations discussed earlier. Addi-
tionally, we used techniques for reducing the size of counterexamples as shorter
counterexamples tend to lead to shorter suffixes, which greatly decreases the
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Table 1: Learning Statistics. BASE stands for Baseline. [T] marks Use of Typing.

SUL Alpha. Term.
Inp. Num. Learning Testing
Loc. Hyp. Inputs Resets Inputs Resets

Linux 3.19
[T]BASE yes 6 15 4,311 947 113,921 11,720
BASE yes 6 15 9,930 2,168 116,479 12,339
[T]BASE+ACK yes 8 21 77,922 13,414 119,768 12,289

FreeBSD 11.0
[T]BASE yes 6 16 4,239 933 113,953 11,708
BASE yes 6 16 9,958 2,152 116,446 12,333
[T]BASE+ACK no 8 21 418,977 80,200 81,024 8,367

Windows 10 BASE-CLOSE no 6 14 193,712 24,848 119,768 12,289

number of inputs needed to run. For sample techniques and a corresponding dis-
cussion we refer to [11]. Finally, to speed up learning, we used multiple systems
under learning in parallel. Model-based testing was done using the algorithm
described in the previous section.

4.2 Experiments and Results

We attempted to learn TCP client implementations of Linux, FreeBSD and
Windows. We chose clients, since they are simpler to learn and contain less
redundancy compared to servers (cf. [8]). In terms of the configurations used, we
disabled adaptive receive windows (or window scale), so that receive windows
remain fixed over the course of each test. Moreover, in the segments sent to the
SUT we advertise the same receive window as that of the SUT. Doing so we
avoid having to include an additional sum constant for our own receive window.

Our baseline alphabet consists of the connect, SYN+ACK, ACK+RST, RST and
close inputs. This alphabet covers several states in the specification. The alpha-
bet should also reveal how SUTs in these states react to RST segments. These
segments are generated in cases where one side abruptly terminates a connection
and should be processed only if their sequence numbers are in window of the
expected. We have also extended the alphabet with the ACK input if learning
with the baseline was successful. To obtain models in an adequate time, we do
not explore data relations between all formal parameters in some experiments.
This optimization has been introduced as typing of symbolic parameters in [5].

Once a hypothesis was constructed, we tested it using the algorithm presented
earlier. We have set the size of the random sequence to 10 (sufficient for exploring
the behavior we are interested in) and ran 15, 000 tests on the final hypothesis.
Using the confidence metric from the previous section, this yields a confidence
of more than 99, 9% that a model is an 0.05%-approximation of the SUT for
data words up to a length of 10 — relative to the probability distribution our
randomized testing algorithm generates over the set of data words.

Table 1 reports the setting, termination status and learning statistics for all
experiments done. The setting indicates the concrete SUT, the alphabet relative
to the baseline and whether typing was used. Successful experiments took at most
two days to complete, the determining factors being the size in parameters of the
suffixes and the 0.3 seconds wait time used for each response before concluding a
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l0
INIT

l1
SYN SENT

l5

CLOSED

l2

ESTABLISHED

l3

FIN WAIT

l4

FIN WAIT

CONNECT /SF (f ,0)
r1:=f

SA(p1,p2) | true
r1:=p2

/R|F (r1,0)
−

SA(p1,p2) | r1+16=p2
r1:=p2;r2:=r1

/R|F (r1,0)
r1:=r2

SA(p1,p2) | r1+1=p2
r1:=p1;r2:=p2

/A|F (r2,r1+1)
r1:=p2

R(p1,p2) | r1<p1≤r1+29200
− ,

RA(p1,p2) | r1<p1≤r1+29200
− ,

SA(p1,p2) | true
− /A|F (r2,r1)

−

CLOSE /FA|F (r2,r1)
−

R(p1,p2) | r1<p1≤r1+29200
− ,

RA(p1,p2) | r1<p1≤r1+29200
− ,

SA(p1,p2) | true
− /A|F (r2,r1)

−

R(p1,p2) | r1<p1≤r1+29200
− ,

RA(p1,p2) | r1<p1≤r1+29200
− ,

SA(p1,p2) | true
− /A|F (r2,r1)

−

R(p1,p2) | r1=p1
− ,

RA(p1,p2) | r1=p1
− /TO

RA(p1,p2) | r1+1=p2
− /TO

Fig. 8: Model of Linux Client. Flags are replaced by their starting characters (i.e.
FIN by F, SYN by S). We group inputs with guards soliciting the same output
and assignment over registers and use input/output notation. Inputs have guards
over parameters. In outputs, parameters are instantiated.

timeout. We automatically terminated experiments still unresolved after 500, 000
inputs. For these experiments, we still display the last hypothesis and learning
numbers at the point of termination. Results are available on RaLib’s website.3

Using both un-typed and typed baseline alphabets we inferred models for
Linux and FreeBSD. We inferred a model for Linux using the ACK-extended typed
alphabet, but not for BSD. Learning FreeBSD for this setting followed a similar
course to learning Linux, leading to a similar hypothesis. Testing generated a
counterexample, whose processing resulted in a long new suffix. The suffix proved
too expensive for tree queries to terminate within the input bounds set.

We couldn’t learn Windows models even after removing the CLOSE input.
Analysis of the last conjectured model and the generated tests revealed behavior
inconsistent with the specification: Windows accepts sequence numbers up to
and including window size plus one in the ESTABLISHED state for RST inputs.
This helps demonstrate a limitation of our approach: relevant data relations R
are an input to learning and convergence is guaranteed only for systems that
respect R (cf. Section 3.1).

4.3 Analysis of Conformance to RFC

Figure 8 presents the model learned for Linux using the baseline alphabet. The
models learned for FreeBSD and Linux are near identical with one exception.
Linux defines an in-window sequence number as a value up to and including
rcv.nxt+win (for a next expected sequence number rcv.nxt). FreeBSD excludes
the higher bound. Windows, on the other hand, even seems to include rcv.nxt+

3 See: https://goo.gl/23VNfv
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#de f i n e a f t e r ( seq2 , seq1 ) be f o r e ( seq1 , seq2 )
stat ic i n l i n e bool be f o r e ( u32 seq1 , u32 seq2 ) {

return ( s 3 2 ) ( seq1−seq2 ) < 0 ;
}
stat ic i n l i n e bool tcp sequence (

const struct t cp sock ∗tp , u32 seq , u32 end seq ) {
return ! b e f o r e ( end seq , tp−>rcv wup ) &&

! a f t e r ( seq , tp−>rcv nxt + tcp rece ive window ( tp ) ) ;
}

Listing 9: Relevant Code of TCP Implementation in Linux Kernel.

win+1. The RFC 793[14, page 26] specifies a closed upper bound. Thus, FreeBSD
conforms to the upper bound requirement whereas Linux and Windows do not.
For Linux, we trace this violation to code in the most recent kernel, v4.11.4

Listing 9 shows the relevant code snippets. To check whether a sequence number
is not after the window, they use the !(seq > rcv.nxt+ win) conjunct, allowing
rcv.nxt + win to be within the window. We inquired Linux developers about
this issue and they confirmed it and said they would issue a fix for it. During
our experiments, we have uncovered a different, unrelated, bug relating to faulty
re-transmissions for which a fix has been issued.

Aside from that, reset processing seems to be implemented as stated in the
RFC with the remark that both systems implement the ’Blind Reset Attack
Using RST Bit’ safe guard introduced in RFC 5961[1, page 7], by which only
RST segments with the sequence number equal to the expected sequence number
cause the termination of a connection. RST segments whose sequence number is
in window but not equal to the expected sequence number prompt a ’challenge
ACK response’. We can verify that this is the case by analyzing the Linux model’s
responses to RST segments in the ESTABLISHED and FIN WAIT1 states. As a note,
RFC 5961 might have been the cause of the inconsistency remarked previously.
As of this writing, RFC 5961 gives a wrong description of the within/outside
window conditions of RFC 793. The error had been reported in 2016 and is
included in the RFC errata5.

5 Conclusion

Our work introduces the first application of register automata learning to real
networked systems, in the form of TCP clients. To that end, we have devel-
oped the theories needed to learn TCP into the learning framework of [6]. We
implemented heuristics that improve scalability of learning and developed a com-
ponent that deals with non-determinism in fresh data values. The application of
our learning-based testing setup resulted in models for TCP client implementa-
tions of Linux and FreeBSD. Our setup helped reveal violation of the RFC 793
standard [14] in Linux and Windows. In Linux we identified the root cause for
the violation in the Kernel code.

4 See: https://goo.gl/9A8ZYM
5 See: https://www.rfc-editor.org/errata/rfc5961
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In a next step, we plan to produce models for extended sets of inputs and
models of TCP servers. Despite the optimizations used, we eventually faced
combinatorial blow up in the number of required tests. Combining learning with
static or symbolic analysis methods may help reducing this blow up by iden-
tifying more precisely the relations one should test for. This will also address
the limitation of fixed relations that prevented us from learning a model for
Windows.
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