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Abstract. Behavioral interfaces describe the safe interactions with a
component without exposing its internal variables and computation. As
such, they can serve as documentation or formal contracts for black-
box components in safety-critical systems. Learning-based generation of
interaces relies on learning algorithms for inferring behavioral interfaces
from observations, which are in turn checked for correctness by formal
analysis techniques. Learning-based interface generation is therefore an
interesting target when studying integration and combination of different
formal analysis methods. In this paper, which accompanies an invited
talk at the ISoLA 2018 track “A Broader View on Verification: From
Static to Runtime and Back”, we introduce interpolation and symbolic
search for validating inferred interfaces. We discuss briefly how interface
validation may utilize information from runtime monitoring.

1 Introduction

In the automotive and aeronautic industries, it is customary for original equip-
ment manufacturers (OEMs) to contract the design and implementation of sys-
tem components to external companies [18]. In such a scenario, the OEM specifies
a set of requirements on the component that is to be developed. The contractor
develops the component as a black-box: the delivered product does not typically
include intermediate artifacts such as design models or source code. As a con-
sequence, the only means of verifying external components is black-box testing,
which provides no formal guarantees.

This situation can be mitigated to some extent if contractors produce high-
level behavioral models which, while suitable for verification, do not expose de-
tails of the component implementation. For example, behavioral component in-
terfaces describe the safe interactions with a component without exposing its in-
ternal variables and computation. Such interfaces can serve as assume-guarantee-
style formal contracts for black-box components of flight-critical systems [18]. In
general, substituting component models with abstract component interfaces can
significantly increase the scalability of formal analysis techniques for component-
based safety-critical systems.
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Fig. 1: Architecture of the PSYCO Tool for Interface Generation.
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In order to generate such component interfaces for component implemen-
tations, the internal details of the component have to be abstracted and rele-
vant observable behavior has to be projected to the interface. Learning-based
interface-generation frameworks use learning algorithms to infer behavioral in-
terfaces from observations; by design, the generated interfaces do not include
structural or internal component information. On the other hand, learning from
observations needs to be complemented by methods that check the quality (i.e.,
accuracy) of an inferred model, and that trigger model refinement, if necessary.
The variety of formal techniques involved in learning-based interface generation
makes interface learning frameworks great platforms for studying the integration
and combination of different formal analysis methods.

This work uses the Java Pathfinder extension PSYCO [14,17] for learning-
based computation of behavioral interfaces of Java components. As discussed
above, and as shown in Figure 1, PSYCO iterates between two modes of opera-
tion when generating interfaces: interface learning, the part that learns a model
from observations, and interface checking, the part that checks the quality of the
produced interfaces.

To generate candidate interfaces, PSYCO uses a combination of 1) active
automata learning [2,21] with alphabet abstraction refinement [19] and 2) dy-
namic symbolic execution [15]. Active automata learning algorithms infer finite
state models by generating sequences of invocations to component methods and
observing the resulting output of components. Alphabet abstraction represents
sets of equivalent concrete method invocations (especially with data parame-
ters) symbolically. Symbolic predicates are recorded when executing method



sequences generated by the learning algorithm with symbolic data parameters.
Since automata learning infers models from observations, it is neither correct
nor complete unless inferred models can be discharged against component imple-
mentations. To validate a candidate interface, PSYCO compares the interface to
the component implementation up to a user-specified depth. As a consequence,
PSYCO cannot provide strong guarantees on the correctness of generated in-
terfaces.

This paper extends the Interface Checker of PSYCO (shown in the right
half of Figure 1) with additional approaches. First, we use interpolation [10]
to obtain over-approximating state predicates from paths explored in symbolic
execution. These predicates allow us to skip symbolic execution for already ex-
plored parts of the state space. Second, symbolic search can be used for checking
correctness of candidate interfaces. The basis for describing and implementing
these extensions is a unified logic-based encoding of component interfaces and
internal behavior. Finally, we briefly discuss how runtime monitoring and mod-
ern active learning algorithms can be used for “life-long” learning of interfaces
at runtime. We evaluate the presented extensions on a set of Java components
that have served as benchmarks in previous works on PSYCO.

The contribution of the presented work is two-fold: On the one hand, our
extensions enable PSYCO to actually compute correct component interfaces —
as opposed to interfaces with bounded guarantees. On the other hand, we show
how quite different formal methods (at design time as well as at runtime) can be
integrated and exchange information to solve the interface generation problem.

Related Work. Interface generation for white-box components has been studied
extensively in the literature (e.g., [1, 13,14, 16,29, 6]). To the best of our knowl-
edge, PSYCO [14,17] is unique in that it generates interfaces that combine
constraints over sequences of method invocations with constraints over values of
method parameters and integrates static, dynamic, and symbolic analysis.

In this paper, we focus on the problem of checking equivalence of a con-
jectured interface model and a component implementation. We show that this
problem can be formulated as a reachability analysis on the product of compo-
nent and interface, which is a classic model-checking problem. Coudert et al. [9]
present the idea of building the cross product of a component interface and its
specification using Boolean formulas for verifying implementation correctness of
electronic circuits. Our symbolic search is similar to this approach. We provide
a state-of-the-art implementation of the search algorithm that allows solving of
cross products in quantified bitvector logic.

Binary decision diagrams have been successfully used in the past as encoding
for model checking algorithms to increase verifiable system size (e.g. [5]). These
works are not directly applicable to our scenario as methods have data param-
eters which appear as quantified variables in state predicates. Another class
of approaches relies on logic-based encoding and SAT- or SMT-solvers: Biere
et. al. [4] developed a logic-based Bounded Model Checker for LTL properties.
McMillan [26] has shown that model checking can verify CTL properties using
a SAT-solver able to solve universally quantified Boolean formulas. These works



have shown that a symbolic encoding based on Boolean formulas is more space-
efficient than BDDs but depends on deciding quantified formulas for reaching
completeness. More recent works replaced SAT-solvers by SMT-solvers [3, 8]. Ge
et al. [12] implemented complete instantiation for quantified formulas in Z3 al-
lowing to solve quantified formulas in SMT. Wintersteiger et al. [30] extended
this for the theory of quantified bitvector formulas (QBVF) and introduced sym-
bolic quantifier instantiation to avoid complete instantiations whenever possible.
Unfortunately, no effective interpolation techniques are available for bitvector
formulas with or without quantifiers.

Jaffar et al. [24] were the first to tackle the path-explosion problem of sym-
bolic execution by annotating symbolic states with learned facts (i.e., inter-
polants) after a search backtracks, and pruning future searches. This work was
presented in the context of Constraint Logic Programming and it was extended
to deal with C programs by [23,22], but limited to intra-procedural programs
over linear arithmetic and arrays. McMillan [27] generalized further Jaffar and
colleagues’ ideas to deal with richer SMT theories and recursive functions, nam-
ing also the idea with the term Lazy Annotation. Our work applies the ideas
presented in these works to symbolic execution of reactive components. The
main difference between our use case and symbolic execution of sequential pro-
grams is that for components there is no sensible notion of program location. The
environment can call arbitrary sequences of methods. As a consequence, we can
use state predicates only for component states at the same depth of exploration.

Outline. The remainder of the paper is structured as follows: We start by pro-
viding some intuition on the problem we are addressing in the next section before
providing some formal preliminaries in Section 3. In Section 4, we present the
technical details on the new extensions to PSYCO. Results from an evaluation
can be found in Section 5. We conclude in Section 6 by discussing future research
directions with a particular focus on combining analysis steps at design time and
at runtime.

2 DMotivating Example

We are interested in generating behavioral interfaces for components. In our
context, a component comprises a finite set of primitive state variables and
one or more methods with data parameters that operate on the state variables.
Recursion and loops without constant bounds are not allowed in methods. This
is a common restriction for embedded systems that must guarantee safety critical
constraints. A formal definition of components can be found in [17,14].

For the remainder of the paper we assume JAVA implementations for compo-
nents. An example of a component is shown in Figure 2a. The Explorer Compo-
nent exposes methods move (int p) and check(). Method move adds the value
of parameter p to internal state variable z if  and p are within certain bounds.
Method check asserts that state variable x is not zero.

Behavioral interfaces are formal models of components that describe all se-
quences of method invocations on a component that are safe, i.e., will not lead



class Explorer {
int x = 0;
void move( int p ) {
if ((x < 200 &&
0<p&&p<20)
= x

= (x=0)

Om.1 = (x> 200) A (' ==x)

} X + p; ©m,2 = (£ < 200) A (0> p) A (z' =)
void check() { ©m,3 = (£ <200) A (0<p)A(p>20)A (2" =)
} assert x I= 0; Oma = (x <200)A0<p)A(p<20)A(z' =z +p)
}
} per = (€ #0) A (¢ =)

o2 = (x=0)A(z' =) // assertion failure.

(b)

move(p)

[p<0V20<p]
move(p)

[0<p/\p<20] »

Fig.2: Java Component (a), Corresponding Symbolic Method Paths (b), and
Behavioral Interface (c).

to errors. For the Explorer component shown in the figure, the sequence of
method invocations 71 = move (1) check() will not lead to an error while se-
quence 75 = move(0) check() leads to an assertion violation. The interfaces
generated by PSYCO are finite-state automata whose transitions are labeled
with method names and guarded with constraints on the corresponding method
parameters, as shown in Figure 2c. Initially, it is not safe to call check (the
automaton enters the error state ¢,). The guards partition the input spaces of
parameters: Invocations of move with values of p in the interval [1,19] put the
component into a state (¢; in the model) from which all method invocations are
safe. Calling move after instantiation with value of p outside [1, 19] has no effect
on the state of the component.

As shown in Figure 1 and detailed in [17], PSYCO generates interfaces by
iterating two modes of operation: The interface learner generates conjectured
interfaces using a combination of active automata learning, automated alphabet
abstraction, and dynamic symbolic execution. As learning is neither sound nor
complete, learned interfaces have to be validated against the component imple-
mentation. The interface checker of PSYCO does this by executing the interface
and the component in parallel, and checking agreement of their error states. For
the remainder of the paper, we focus on two extensions of the interface checker
that compute correctness of interfaces on symbolic representations of component
and interface.



Figure 2b shows fully symbolic execution paths (including symbolic state
variables) of methods of the Explorer component. PSYCO uses the JDART
dynamic symbolic execution engine for computing these paths. These fully sym-
bolic method summaries can be understood as a logic-based encoding of the
component’s behavior as a transition system. We can respresent the interface as
a symbolic transition system, too. In the next section, we explain how candidate
interfaces are validated against components where symbolic representations are
used for both components and interfaces.

3 Symbolic Representation of Components and Interfaces

We are interested in reactive components that manipulate a set of internal state
variables. Components expose methods with data parameters that can be in-
voked from the outside. We abstract from output since we are only interested in
safe interactions with a component, i.e., ones that do not trigger an error. For
the sake of presentation we assume that all methods have the same number of
parameters. We use logic-based symbolic transition systems for specifying the
behavior of components and their interfaces.

Let L be a logic with decidable entailment =1, and a set V' of values allowed
in IL. For the sake of readability we abstract from types in the presentation. For
a formula ¢ in IL with free variables x, we write ¢[x] when we want to emphasize
that ¢ has free variables x and Fy for the set of formulas with free variables
x. We write @[y/z] for the formula that results from replacing = by y in ¢. For
variables x = (x1,...,x,), a valuation is a mapping o : x — V and V is the set
of all valuations of x. For a formula ¢[x] and a valuation o € V4, let ¢[o] denote
the instantiation of x by o in ¢, i.e., plo(z1)/z1][. . ]J[o(zn)/zs]. A valuation o
satisfies ¢ if p[o] is true. A formula ¢ is satisfiable if there exists a valuation o
that satisfies . When a formula @[x] entails a formula [x], denoted by ¢ =, 1,
then ¢[o] being true implies that ¢[o] is true for any valuation o in V. We can
test entailment by checking if ¢ A =) is satisfiable. If this formula is satisfiable
then ¢ does not entail ¢. Entailment is more complex to check for formulas ¢[x]
and 9[y], where y contains variables that do not belong to x. Let z =y \ x. In
such a case, the formula testing for entailment becomes (pAVz.—)), where Vz.—)
denotes the formula in which all variables in z are bound by universal quantifiers
for —p. Finally, if we have two inconsistent formulas p[x] and ¢[y] (i.e., ¢ A
is not satisfiable), an interpolant [10] is a formula i[x N y] over the common
variables in ¢ and ¢ that is implied by ¢ (i.e., ¢ = i) and inconsistent with
¥ (i.e., 1 A9 is unsatisfiable).

Definition 1 (Symbolic Transition System). A symbolic transition system
is a tuple STS = (M, x,Z, T, Tr), where M is a finite set of methods with method
parameters p, X is a set of state variables, Z[x] is a logic formula describing a
set of initial states, and T C M X Fxupux’ @5 a set of guarded method executions
(i.e., transitions) with guards over state variables x and method parameters p,
and effects on updated state variables x'. Finally, T, C T is a subset of guarded
method executions that lead to errors.



For the remainder of this paper, we focus on deterministic and input-complete
symbolic transition systems, where for every method m € M, every valuation
vx € Vi of state variables and every valuation vp € Vp of method parameters,
there exists exactly one transition (m,¢) € T for which p[vx][vp] is satisfiable.

We define the semantics of a symbolic transition system 7 = (M, x,Z, T, Tx)
in terms of feasible sequences of transitions. For a sequence (mq, ¢1), ..., (mg, ¢k)
of transitions, we define the strongest postcondition, denoted by spce(Z -1 - .. .-
¢k ), as the conjunction

Iy /x] A erlyr/x][p1/plly2/xT A oo A erlyr/x][pr/pPlx/X],

where we assume sets y; and p; to contain uniquely named variables (espe-
cially when working with multiple post conditions). Analogously, the weakest
precondition of a sequence of transitions and a state predicate ¥[x], denoted by
wpce(py - ... - g - ), is the conjunction

e1lx/x][P1/pPlly1/xT A oo A orlyr/XI[Pr/Pllyr+1 /X A Ylyrsi/x].

Please note, that wpc and spc are formulas over x and sets of uniquely named
variables.

A sequence (mq, 1), ..., (Mg, pr) of transitions is a (symbolic) trace of STS
if the first k£ —1 transitions are from (7 \ 7;) and spc(Z -1 -. . .- ¢y) is satisfiable.
It is a safe trace if it ends with a transition from 7 \ 7. A trace that ends with
a transition from T is an error trace of STS.

Ezample. Figure 2b shows path conditions for the JAVA component from Fig-
ure 2a. These paths are the basis for STSg, = (M,x,Z,7T,T,) with meth-
ods M = {move(p),check()}, variables x = {z}, initial condition Z = (z =
0), as well as transitions 7 = {(move(p), om,1);-- -, (check(), vc2)} and Tr =
{(check(), pc,2)}. The strongest post-condition of the sequence of transitions
(move(p), om,2), (check(), pc.2) is

(11 =0) A (y1<200) A (0>y2) A (y3=y1) A (y3=0) A (z=y3).

The condition is satisfiable, which makes the transition sequence an error trace
of STSEg,. Also, the condition describes the strongest post-condition on x after
executing these method paths in sequence.

Behavioral Interfaces We fix a component with set of methods M and method
parameters p. A behavioral interface is a finite automaton that describes the safe
traces of the component.

Definition 2 (Behavioral Interface). A behavioral interface is a tuple A =
(X,Q,q0,¢x, I'), where ¥ C M x Fy, is finite set of guarded methods (and guards
are only over p), Q is a finite set of states, qo € Q is the initial state, ¢, € Q is
the error state, and I' : (Q \ {qr}) X X+ Q is the transition function.



As for symbolic transition systems, we assume deterministic automata where for
every method m € M, and every vp € V, there exists exactly one transition
(m, ) € I' for which ¢[vp] is satisfiable.

For some fixed mapping « : @ — Ny, we define the semantics of an interface
automaton A = (¥, @, qo,¢r, ') by means of the symbolic transition system
STSA = (M,x,Z,T,T,) where M has been fixed above, x = {z,} contains
a single variable for maintaining the current state, the initial condition qq is
(xq = k(qo)), and for every transition (g, (m,¢),q¢’) € I', we define transition
t=(m,¢)in T with ¢ = (v, = k(q) NpAzj, = k(q')). We add t to Ty if ¢’ = ¢x-
A sequence of method invocations is safe in A if it is a safe trace of STS 4 and
erroneous if it is an error trace of ST S 4.

Ezxample. Figure 2c shows the behavioral interface for the component from Fig-
ure 2. Formally, the interface is defined by the tuple Ag, = (¥, Q, g0, ¢x, ') with
X = {(move(p), (0 < pAp < 20)),...,(check(),true)}, states Q@ = {qo,q1,qx}
and tranitions as in the figure. When generating a symbolic transition system
from Apg,, the (check(),true) transition from gy to g, will be the basis for the
only error transition.

Checking Components against Interfaces Since we are interested in precise
interfaces, correctness means behavioral equivalence between the interface and
the component, i.e., equality of sets of safe and error traces. Behavioral equiva-
lence is checked on the composition of the corresponding transition systems, as
described below.

For symbolic transition systems STS' = (M,x!,Z", 7", T) and STS? =
(M,x2, 7% T?,T2) over identical methods M and over disjoint sets of variables
(x! Nx2 = 0), we define the product as

ST81><2 _ <M,X1 UXQ,II /\I2,T1X2,7;1X2>

with
- T1X2 = {(ma(pl A 902) : ((m7¢1)a (ma<p2)) € Tl X 7—2}7 and
- 7;1X2 = {(m7901 A 902) : ((m7ap1), (m7<p2)) €

(TI\NTH) x T2 U(Te x (T*\T2)}-

The composition STS'*? has error traces if and only if symbolic transition
systems STS! and ST S? are not behaviorally equivalent.

4 Checking Component Interfaces

As discussed in the previous section, we check correctness of a candidate interface
against a component implementation by searching for reachable error transitions
on the product of the component and the interface. For the remainder of this
section, we fix STS = (M,x,Z,T,T,) as this product. The baseline approach
for validating interfaces that is implemented in PSYCO is exhaustive, depth-



Algorithm 1 Bounded Exploration

Global: STS = (M,x,Z,T,T), depth bound k
1: procedure EXPAND( ((m1,91),..., (mi, 0:)) )
2: if i <k then

3: for (m,p) € T do

4: if spe(Z -1+ ... @i - p) satisfiable then

5: if (m,y) € T then

6: stop with error trace ((m1, 1), ..., (M4, i), (M, 9))
7 else

8: EXPAND( ((m1,¢1),-- -, (mi, i), (m, ¢)) )

9: end if

10: end if

11: end for

12: end if

13: end procedure

or time-bound symbolic exploration of STS. In this mode, symbolic candidate
traces from T* are generated for growing i (up to some bound k) and checked
for feasibility as shown in Algorithm 1. Exploration stops as soon as it finds a
symbolic error trace. In [17], it is shown how information from a static analysis
about reading and writing of state variables in methods can be used for a partial
order reduction. This optimization is still available in PSYCO. In the remain-
der of this section, we present two newer extensions that optimize discharging
conjectures.

4.1 Optimized Exploration through Interpolation

In order to expand fewer states during exploration, we over-approximate states
reached by symbolic execution of method path sequences and under-approximate
safe states with the help of interpolation. We give an example before presenting
the modified exploration of STS: On the component from Figure 2, after ¢y, 4,
path ¢, 2 of method check (which would lead to an error) is not executable and
correspondingly spc(Z - @m. 1 - ¢c,2) is unsatisfiable. We can feed the pair

[ (spe(Z - om,1) , wpc(peg - true) }

to an interpolation constraint solver and will receive an interpolant that is im-
plied by the left formula but is inconsistent with .2, and is only over vari-
ables shared by both formulas, e.g., (0 < 2 A z < 20). The interpolant over-
approximates the states reached after ¢,, 4 and under-approximates the safe
states from which no immediate error can be triggered.

Figure 3 and Algorithm 2 show how we collect and propagate interpolants
during symbolic exploration in order to stop expanding after transitions that
lead to known safe states: After exploring to depth & after sequence of transitions
((m1,01),- .., (M, pr—_1)) without finding error traces, we use the conditions of
the error transitions for computing an interpolant I[x] that over-approximates



Algorithm 2 Optimized Exploration

Global: STS = (M,x,Z,T,T), bound k, safe states oo = ... = y_1 = false

1: procedure EXPANDITP( ((m1,¢1),..., (Mi, i) )

2: if i <k then

3: if (spe(Z -1 -... i) A ;) satisfiable then > Not in Cache?
4: for (m,p) € T do

5: if spe(Z -1 -... ;- o) satisfiable then

6: if (m,¢) € Tr then

7 stop with error ((m1,¢1),..., (M4, i), (M, ))

8: else

9: EXPANDITP( ((m1,p1), ..., (mi, i), (m,)) )
10: end if
11: end if
12: end for > Update Cache
13: if i <k —1 then
14: i i Vitp] spe(T -1+ ... - @5), v(mm)e(T\Tﬂ) wpe(p - piv1)]
15: else
16: Vi <= P Vitp[ spe(T -1 9i)s Vi pyer, (#) ]
17: end if
18: end if
19: end if

20: end procedure

spe(Z -1+ ... pr—1) (cf. bottom left of Figure 3). We propagate interpolants
upwards in the tree by computing weakest preconditions for transitions and
negated interpolants as indicated in the the figure: if spe(Z -1 - ... pr—1) and
¢ are inconsistent with interpolant I, then spc(Z - 1 - ... pr_2) is guaranteed
to be inconsistent with wpc(pg—1 - —I). Please note that, on one hand, negating
I does not introduce universal quantification since I only has free variables x.
On the other hand, exploration still has to be depth-bounded since safe states
are only computed w.r.t. some remaining depth of exploration.

4.2 Symbolic Search

In order to move from (bounded) exploration to search, we need to check if some
sequence of paths reaches states that another sequence cannot reach. In our
motivational example, e.g., in order to test if spc(pm, 2) L spe(om,4) as a basis
for deciding if exploration can stop or if it has to expand ¢, 2. This can be done
by checking if a model for spc(¢m,,2) exists that is not a model for spe(yp, 4) and
corresponds to checking the satisfiability of formula spc(pm.2) A —spe(@m.4).
Negation of spc(¢m,4) requires universal quantification of variables private to
spc(m,a), resulting in test

(Vin¥pr - (1 =0 A 41 <200 A 0<p1 A p1 <20 A z=1y1+p)) A
(leZO A y10<200 N OZpll A x:ylo)
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Fig.3: Optimizing Symbolic Exploration in PSYCO based on Interpolation.
Simplified schematic propagation of interpolants through symbolic exploration
tree. In general, unsatisfiable error transitions occur on every level.

In this particular case, it is necessary to explore after spc(¢m 2): all models of
$pc(pm,2) imply & = y10 = 0 while there is no model for spc(p.,.4) in which z =
0. Our symbolic search algorithm is based on checking entailment in this fashion.
Algorithm 3 shows the resulting simple symbolic depth-first search algorithm.
We used symbolic search for analyzing the depth of a component’s state space
in previous work [28]. On the product of component and interface, the algorithm
enables PSYCO to discharge interfaces on component implementations.

5 Implementation and Evaluation

This section highlights some details of our implementation and presents results
from an evaluation on a small set of benchmark components.

Implementation. The complete PSYCO?® tool is implemented in Java and
available as open source software on github. As pointed out in the introduc-
tion, PSYCO integrates different analysis methods with the aim of generating
behavioral component interfaces. For active automata learning, PSYCO uses
LEARNLIB [21] and AUTOMATALIB®, which also provides basic support for dif-
ferent automata transformations and visualization tasks. Internally, PSYCO
works on a logic encoding of analyzed components, for which JCONSTRAINTS is
used. The Z3 constraint solver [11] is used in most cases for deciding satisfiability

® https://github.com/psycopaths/psyco
5 https://github.com/Learnlib/automatalib
7 https://github.com/psycopaths/jconstraints



Algorithm 3 Symbolic Search

Global: STS = (M,x,Z,T,T), reached states Yreach < Z
1: procedure SEARCH( ((m1,¢1),..., (M, ¢i)) )
2: for (m,p) € T do

3: UNeagt < Spc(L - 1. @i - )

4: if Ynest satisfiable then

5: if (m, ) € T then

6: stop with error ((m1,p1),..., (mi, p:), (M, ))
7 else

8: if (YNewt A VYVDP.—UReack) satisfiable then
9: /l/}Rea,ch — (wReach \Y wNegct)

10: SEARCH( ((m1,®1),..., (M4, p:), (M, )) )
11: end if

12: end if

13: end if

14: end for
15: end procedure

of such encodings. The single exemption is construction of interpolants over lin-
ear integer arithmetic for state abstraction, which is done by SMTINTERPOL [7].
The symbolic search algorithm described in Section 4.2 is implemented in the
JSTATEEXPLORER library.

Finally, PSYCO currently uses JDART [25] for symbolic execution. JDART
allows conversion of execution paths through java methods into symbolic tran-
sition systems. However since verification and learning is completely language
independent in PSYCO, it could be used for components in other languages
than JAVA by replacing JDART with another tool for producing symbolic method
summaries.

Evaluation. We evaluate four configurations of PSYCO. As a baseline, we use
exhaustive depth-limited exploration as presented in [14]. We compare partial
order reduction, as presented in [17], interpolation-based caching, and symbolic
search, against the baseline. Our experiments have been conducted on a native
64 bit Linux host. The CPU is an i9-7960X combined with 128 GB RAM. The
JVM was provided with 32 GB RAM. We run each experiment three times. We
limit PSYCO runs regarding time and memory resources and execute different
exhaustive depth checks during the run.

Results are summarized in Table 1. For all approaches, we report limits on
runtime, sizes of final alphabet and model, |aM | and |Q;| respectively, and depth
kmaz up to which a configuration was able to explore the product of component
and model. For symbolic search we additionally report actual runtimes. Since
symbolic search is the only method that terminates once the state space is ex-
plored completely, we do not impose a time limit - we let it complete or run out of
resources. We report the smallest ky,q, and (for symbolic search) the maximum
runtime from the three runs of an experiment.



Example Baseline Baseline + POR Interpolation Symbolic Search
(runtime: 1h) |(runtime: 1h) (runtime: 1h)
Name  [MI|[aM] [Qi] koo laM] 1Qi] ke |0M] Q1] Kmae||aM] Q1] ks time
AvLTBIT 3 7 6 160 7T 6 162 - - n/a 8 6 256 63 min.
STREAM 5 6 4 11 6 4 14 6 4> 272,000 6 4 2 1 min.
SIGNATURE 6 6 5 11 6 5 12 6 5> 451,000 6 5 2 1min.
INTMATH 8 11 3 10 11 3 13 - - n/a| 11 3 1 1 min.
AcCcMETER 9 9 5 5 9 5 5 9 5 >9,200 - - - dnf
CEV 19] 27 34 6] 27 34 6| 27 34 1771 - - - dnf
CEV V2 200 21 8 4] 21 8 4] 21 20 18*2| 21 20 713 min.
SOCKET 491 57 42 5| b7 42 5| 57 42 73 57 42 8 19 min.
KMAX1 3 4 8 11 4 8 11 4 9 109,821 4 9 12 1 min.
KMAX2 4 9 7 5 9 7 5 - - n/a 9 8 6 1min

Table 1: Comparison between the existing PSYCO model checks and the newly
introduces ones based on interpolation and symbolic search. n/a: no interpolants
due to unsupported language features. x; This experiment hits the memory limit
after 44 minutes. x5 This experiment hits the memory limit after 23 minutes. *3
This experiment hits the memory limit after 5 minutes.

The experiments show that interpolation and symbolic search clearly out-
perform the baseline and partial order reduction: symbolic search terminates
within minutes in most cases and interpolation increases kj,q, by several orders
of magnitude in some cases. However, it is not possible to apply both approaches
to all benchmarks. One challenge for search are deep state spaces: The ALTBIT
example, e.g., is implemented using a counter internally that is incremented with
each call to this component. k,,,, = 256 represents a byte counter, that over-
flows exactly after 256 increments. While symbolic search runs to completion
in this case, it requires 63 minutes. Cycling through deep state spaces becomes
intractable on the bigger examples: The CEV experiment, e.g., has a bug that
traverses the complete integer domain. When the bug is fixed (in CEV V2),
both interpolation and search outperform the baseline approach: while bounded
exploration with interpolation is able to explore up to to 2.5 times the depth of
the baseline (and size of explored space grows exponentially with depth), sym-
bolic search terminates after 13 minutes with a definitive verdict. We can observe
something similar for the SOCKET example. Interpolation reaches one depth less
than the k4, of the search before running out of memory but does this in half
the time. Relaxing the memory limit to 64 GB, interpolation outperforms the
search in depth for this example in less than 9 min.

Validation. In order to also have an external reference for assessing the effi-
ciency of the implemented extensions, we submitted some of the smaller prod-
ucts of hypothesis model and component to SV-COMP?®. Most of the SV-COMP
participants in 2017 and 2018 were not able to solve these tasks, which provides
some confidence that discharging interfaces on component implementations is
not trivial.

8 https://sv-comp.sosy-lab.org/2018 /results



6 Conclusions and Future Work

PSYCO is a tool for computing interfaces of components and to this end in-
tegrates multiple dynamic and static analysis methods. In this paper, we have
presented two methods for discharging conjectured interfaces on component im-
plementations (or vice versa). Bounded checking through symbolic exploration
and optimized by interpolation-based caching of explored states is able to reach
much greater depth than ordinary bounded exploration. Symbolic search termi-
nates with a definitive verdict in most of our benchmarks. The basis for devel-
oping both extensions is a generic logic encoding of component behavior and
interface. The main benefits of such an encoding are that (1) it allows to sepa-
rate development of analysis techniques from generating formal representations,
and (2) that it provides a lingua franca in which different analysis methods can
exchange information.

The presented work brings us one step closer to the ultimate goals of using
interfaces in compositional verification of properties on component-based sys-
tems and as contracts for third-party components. There are multiple intriguing
directions for future research that are motivated by the work on PSYCO but
also pertain to the challenge of integrating different program analysis paradigms
in general:

Support for More Languages. Exchanging JDART by a symbolic execu-
tion engine for another programming language would allow to use the complete
PSYCO approach without any modification on other languages as well. In the-
ory, JDART might be replaced by a symbolic execution engine analyzing assembly
or byte code of a virtual machine, enabling formal analysis of binary component
realizations in domains that typically do not disclose their source code.

Adequate Representation. We have made the interesting observation when
analyzing the main reason for the slow symbolic search performance on the
ACCMETER example: The logic encoding of states contains many math-heavy
constraints. These constraints originate from parts of complex guards, but do
not taint state variables. Based on this observation, we suspect that performance
of symbolic search can be improved by pruning irrelevant parts of constraints.
Moreover, alphabet refinement during learning and product generation before
checking interfaces currently produce fairly complex logic constraints. Constraint
simplification likely has a potential for improving performance and it will lead
to models that are better comprehensible to human experts. While simplifying
constraints may not be solvable efficiently in general, complex constraints arise in
specific situations in PSYCO and have well-defined patterns, which may make
the problem tractable.

Integration of More Analysis Paradigms. For application domains in which
discharging interfaces against implementations is not possible (e.g., for thrid-
party services in Web-applications) we plan to integrate runtime monitoring



of interface-conformance on integrated services. This will require, among other
things, the integration of a modern learning algorithm (e.g. TTT [20]) that per-
form well on potentially long sequences observed by a monitor. While LEARN-
LiB offers very efficient algorithms, PSYCO currently is based on the classic L*
algorithm. Integrating TTT is also expected to have a positive impact on perfor-
mance in cases where interfaces can be discharged: Currently, PSYCO spends
about 50% of runtime on automata learning and TTT has been demonstrated
to achieve substantial savings in runtime over L* [21].
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