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Abstract Abstraction is the key when learning behavioral models of re-
alistic systems, but also the cause of a major problem: the introduction
of non-determinism. In this paper, we introduce a method for refining
a given abstraction to automatically regain a deterministic behavior on-
the-fly during the learning process. Thus the control over abstraction
becomes part of the learning process, with the effect that detected non-
determinism does not lead to failure, but to a dynamic alphabet abstrac-
tion refinement. Like automata learning itself, this method in general
is neither sound nor complete, but it also enjoys similar convergence
properties even for infinite systems as long as the concrete system itself
behaves deterministically, as illustrated along a concrete example.

1 Introduction

Most systems in use today lack adequate specifications or make use of under-
specified components. In fact, the much propagated component-based software
design style naturally leads to under specified systems, as most libraries only pro-
vide very partial specifications of their components. We observed this dilemma
in the telecommunication area: specifications of telecommunication protocols are
usually provided as natural language text documents with no formal link to the
actual implementation. This hampers the application of any kind of formal val-
idation techniques like model based testing [8] or model checking [11], and it
makes it hard to keep them up to date. Automata learning techniques [16] have
been proposed to overcome this situation, by allowing to construct and later
update behavioral models automatically. This has been illustrated in a num-
ber of case studies like e.g. the above mentioned concrete setting of Computer
Telephony Integrated (CTT) systems [17,16], for Web Services [22], protocol spec-
ifications [23] or communication protocol entities [7].

All these scenarios had one thing in common: the learned systems were
‘wrapped’ in a kind of test harness, which in addition to providing access to
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Figure 1. traditional use of abstraction (left) and abstraction as part of the
learning process (right)

the system to be learned also took care of the abstraction inherent in the defi-
nition of the considered behavioral perspective, like hiding certain parameters,
abstracting time to causality, or treating certain resources (e.g., phones) sym-
bolically. This meant that the learning algorithm was not confronted with the
real system, but only with its wrapper-based abstraction (see left half of Fig. 1),
whose adequacy therefore was critical to the success of the whole learning enter-
prise. In the figure, 3' denotes an input alphabet and X© an output alphabet.
By Sigmac we denote an alphabet at the concrete level, while Za refers to an ab-
stract (symbolic) alphabet. As the employed active learning techniques assume
a deterministic behavior, this meant in particular that this abstraction (from
3¢ to Za) had to impose a deterministic behavior on the concrete system. This
is a very strong requirement when dealing with black box systems, which led
to many manual modifications of the wrapper in the course of a single learning
experiment; each one requiring a complete restart of the learning process, using
the refined alphabet.

In this paper we propose a method to automatically refine a given abstraction
until a level is reached where this abstraction imposes a deterministic behavior
on the concrete system. Like automata learning itself, this method is in general
neither sound nor complete, but it also enjoys similar convergence properties
even for infinite systems (in fact, both the alphabet and the state set of the
concrete systems may by infinite) as long as the concrete system itself behaves
deterministically. Key to this method is the switch from the learning scenario
shown in the left of Fig. 1 to the one in the right, which allows the learning
algorithm (L) to control the abstraction. Technically this is achieved by a change
of perspective: Rather than working at the abstract level, the learner is sitting
now at the concrete level in order to observe the concrete system behavior for
a set of representatives of the equivalence classes imposed by the abstraction.
Thus abstraction is no longer a ‘filter’ between the concrete system and the
learning algorithm, but rather a teacher, helping the learner to choose adequate
representative tests. This learner is able to automatically resolve controllable
non-determinism, i.e. non-determinism which is due to the imposed abstraction.
Thus the control over abstraction becomes part of the learning process, with the



effect that detected non-determinism does not lead to failure, but to a dynamic
refinement of the abstraction.

Related Work: We are not aware of any learning framework exploiting alphabet
abstraction refinement for treating the problem of undesired non-determinism.
Closest is the work reported in [14], where the learning alphabet is automat-
ically refined (i.e. extended) to capture previously missing aspects of system
interaction during learning-based assume guarantee reasoning [12]. In contrast,
our notion refinement concerns the granularity of an abstraction. This notion is
reminiscent of predicate abstraction as presented in [10,18] for model checking,
and specifically used as a preprocess for learning in [2].

However, in contrast to these approaches, which are white box in the sense
that a concrete system description is available, our approach is black box, and
therefore requires a ’behavioral’ description of the equivalence classes of the
refined abstractions in terms of witnesses (cf. Section 3). We expect that this
approach will be particularly fruitful when dealing with parameterized resp.
abstract alphabets (cf. [5,6,15,26]).

Outline: In Section 2 we introduce the theoretical framework we use for alphabet
abstraction refinement and show the existence of a coarsest deterministic alpha-
bet abstraction. Section 3 presents the integration of the proposed abstraction
refinement into existing active learning algorithms, while Section 4 discusses an
illustrating example scenario, before we conclude in the final section.

2 Alphabet Abstraction Refinement

Mealy automata have turned out to be a very good automata model for learn-
ing in practice, and, indeed, also in this paper we will use them in the later
parts. However for the ease of exposition, we will introduce our new method for
alphabet abstraction refinement (AAR) first for the structurally simpler setting
of deterministic automata. Please note that we do not require the finiteness of
the alphabet or the set of states. They are not necessary for the correctness of
the method, but only for the convergence of the corresponding algorithm. The
subsequent generalization to the setting of (countable) Mealy automata is then
straightforward.

In order to emphasize that the systems we are aiming at do not need to be
finite state themselves, we directly introduce the following notion of countable
automata. Of course, automata which we produce will continue to be finite state:
they are finite state views/approximations of potentially infinite state systems.
This is why we prefer to call this learning process regular extrapolation (see also
RERS challenge [9]).

Definition 1. A deterministic countable automaton (DCA) is a tuple Sys=
<Q7qo,z76,F> where

— Q is a countable nonempty set of states,



— (o € Q is the initial state,

— 2 is a countable alphabet,

— 0:Qx X — Q is the transition function, and
— F C Q is the set of accepting states.

Intuitively, a DCA evolves through states g € Q, and whenever one applies an
input symbol (or action) a € Z, the machine moves to a new state according to
5(g,a). A word we X* is accepted by the DCA if and only if the DCA reaches an
accepting state Qi € F after processing the word starting from its initial state. We
write q L g to denote that on input symbol a the DCA moves from state ( to
state . The transition function d:Qx X — Q can be extended to & :Qx Z* — Q
such that for all states ,q' € Q letters a€ X and words W€ Z* the following holds:
0'(q,e) =q, and &(g,aw) = &(d(q,a),w).

2.1 A Sketch of Classical Automata Learning

Automata learning tries to construct a deterministic automaton representation
that matches the behavior of a given target automaton on the basis of obser-
vations of the target automaton and optionally some further information on its
internal structure. Active learning algorithms [3,4] learn finite state acceptors or
Mealy machines by actively posing membership queries and equivalence queries
to the target automaton in order to extract behavioral information, and by refin-
ing successively an hypothesis-automaton based on the answers. A membership
query collects the output that a string (a potential run) will produce on the
automaton, and an equivalence query compares the hypothesis automaton with
the target automaton for equivalence, in order to determine whether the learning
procedure was successfully completed. In this case experimentation can stop.
In principle, learning starts with a one state hypothesis automaton that treats
all words over the considered alphabet (of elementary observations) alike and
refines this automaton on the basis of query results iterating two steps. Here,
the dual way of how states are characterized is central:

— by words reaching them. A prefix-closed set S of words reaching each state
of an automaton exactly once defines a spanning tree of the automaton.
The algorithm will construct such a set S. Extending the spanning tree to
also contain all the one-letter continuations of the words in S (referred to
as SA(=Sx X)) will result in a tree covering also all the transitions of the
automaton.

— by their future behavior wrt. a dynamically increasing vector of strings from
2*. Let this vector be denoted by D. This characterization is too coarse
throughout the learning process and will be refined continuously following
the pattern of the well-known Nerode congruence [21].

During the learning process, membership queries are used to refine the current
hypothesis. Every time a stable hypothesis (closed under the transition function)
exists, an equivalence query is performed. In case the hypothesis is not equivalent



to the target system, a counterexample highlighting some difference is returned
and exploited to further refine the hypothesis.

The following section introduces the notion of determinism preserving abstrac-
tion (DPA) and states that any abstraction has a unique greatest DPA. Our
learning algorithm, subsequently presented in Section 3, resolves detected non-
determinism of a given abstraction by (optimal) refinement. Rather than failing
in response to non-determinism, the algorithm automatically also ‘learns’ the
corresponding greatest DPA.

2.2 Determinism Preserving Abstraction

Assume an unknown DCA Sys together with a finite abstraction given in terms
of a pair of adjoint functions (a,y), i.e., o : Zc — Za, where sets annotated with
C denote sets of (potentially infinite) concrete alphabet symbols and sets anno-
tated with A denote sets of finite abstract input symbols. The set of abstract
input symbols Za will evolve throughout the learning process according to the
refinement in response to detected non-determinism. The concretization function
Y:Za — 2Zc is required to satisfy that yoa is the identity: i.e., each y(a) has to
be an element of a~1(a).

Like for verification, when learning behavioral models of real systems, finding
the right level of abstraction is essential. It is necessary to make the learning prob-
lem tractable, and it allows one to automatically arrive at tailored views focusing
on the parts of interest. Let us therefore assume that Za is a finite abstraction
of the concrete alphabet 2¢, identifying what we would like to distinguish of the
behavior of Sys, and o : Zc — Za is the corresponding (abstraction) function. By
O-equivalence we denote the equivalence relation =y over Z¢ induced by a, i.e.:

WWeZ . v=gW < V= WA VLI<i<|v.av)=oa(w)

Typical prerequisite of active learning techniques is that there exists a determin-
istic acceptor (the membership oracle) for individual behaviors (words). Unfor-
tunately, even if Sys itself would be such a deterministic acceptor!, its abstrac-
tion to observations in X} is in general not deterministic, i.e., there exist words
Wi, Wo € 2 with

— Sys accepts Wy but rejects Wp and
— Wi and Wy are O-equivalent.

This has the fatal effect that typical active learning solutions would simply fail
in their attempt to learn the behavior at this level of abstraction. For the rest
of this section we will show that there exists a ‘best’ or coarsest intermediate
abstraction O¢g: Zc — 2¢o which refines o in a deterministic fashion, i.e.:

Ywi,Wo € ZF . Wy =g Wo = (W € L(Sys) =wo € L(Sys))

I Indeed, in practice one tests the real system to check for membership, and in most
scenarios, the concrete system is supposed to have deterministic behavior.



Abstractions like this are said to preserve determinism.

The following corollary to our main theorem (Theorem 1) formulates con-
cisely the backbone of our enhanced learning algorithm, which on demand refines
the considered abstraction in an ‘optimal’ fashion, while in particular avoiding
any problems due to non-determinism introduced by the abstraction (see Sec-
tion 3). The corollary could also be proved as an independent theorem using
lattice theoretic arguments. On the other hand, it is a direct consequence of the
more constructive argument underlying the correctness proof for our enhanced
partition refinement algorithm.

Corollary 1 (DCA: Alphabet Abstraction Refinement).

Let Sys=(Q,q,2¢c,d,F) be a DCA and a:Zc — Zp a (finite abstraction) func-
tion. Then there exists an (abstraction) function Oco:2c — Zco refining O in a
deterministic fashion with

- 3(}0 . d=0p0 ac,o and
— for all abstractions Oq : Zc — Z4 tmposing a deterministic behavior on Sys,
we have: 30 :Zg —2Za . A=0ro0y == dUp:Zyg — Zco. Oco=0p00g.

The following section generalizes this theorem to fit the further development of
this paper. The resulting theorem, which works for countable Mealy machines
(see below), is then proved in parallel with the presentation of the partition
refinement algorithm for constructing the greatest determinism preserving ab-
straction in Section 3.

In order to show that such ‘optimal’ abstractions also exist in the slightly
more complicated setting of Mealy automata, let us first pinpoint the essence
of the difference. Rather than accepting words, Mealy automata produce an
output after processing an (input) word. As in the case of DCA, we generalized
the notion to allow countable sets of alphabets and states.

Definition 2. A countable Mealy machine (CMM) is defined as a tuple Sys=
<Q7q0527§276;}\> where

— Q is a countable nonempty set of states,

— Qo € Q is the initial state,

— 2 is a countable input alphabet,

— Q is a finite output alphabet,

— 0: Qx Z— Q is the transition function, and
A QxZ— Q is the output function.

Intuitively, a countable Mealy machine evolves through states q € Q, and when-
ever one applies an input symbol (or action) a€ Z, the machine moves to a new
state according to 8(0,a) and produces an output according to A (q,a).

One can regard DCAs as CMMs whose output alphabet has just two symbols,
one for acceptance and one for rejection. With this intuition in mind it is not
surprising that the corresponding corollary looks almost identical.



Corollary 2 (CMM: Alphabet Abstraction Refinement).

Let Sys= (Q,0qo,2c,Q,8,Y) be an deterministic CMM and a :Zc — Za an ar-
bitrary (abstraction) function. Then there exists an (abstraction) function Ocg :
2c — 2Zcp refining O in an deterministic fashion with

- 3(}0 . d=0g0 ac,o and
— for all abstractions Oq : Zc — Z4 tmposing a deterministic behavior on Sys,
we have: 0y 124 —2Za . A=0r009 = 034 — 2co. Oco =000y

We will provide a partition refinement algorithm for the construction of the
desired deterministic abstraction function via abstraction refinement.

3 Automated Alphabet Abstraction Refinement

In this section, we develop our partition refinement-based algorithm for alphabet
abstraction refinement in the setting of Mealy machines, the system model we
consider most adequate for practical applications. In this setting, we fix the
output alphabet Q (in the DCA case just ’accept’ and ‘reject’), and, given some
initial abstraction Za of the input alphabet ¢, we learn the coarsest abstraction
that refines 2 and preserves determinism.

Our learning algorithm works directly on a representation system R for a-
equivalence, i.e., initially, for each symbol of 2p we have a unique symbol of
>c, its concretization, which is used to query the concrete system Sys, when-
ever its abstraction appears in a membership query. This way, membership
queries will never encounter non-determinism. This problem only arises when
handling counterexamples. They can contain arbitrary alphabet symbols of Z¢.
Non-determinism can then be detected, when the counterexample transformed
to an O-equivalent word consisting only of symbols in R produces a different
output, as shown in Fig. 2. Here, the topmost line depicts the concrete input
sequence defining the counterexample and the second line its transformation into
the corresponding O-equivalent input sequence in R*.

This is the point where classical learning would simply fail, and where our
partition refinement-based technique shows its power. Key to our technique is
the ‘semantic’ way of maintaining a representation system during the refinement-
based evolution of the input alphabet in terms of witnesses:

Definition 3 (Witness). Let Sys be a Mealy machine, p,d € X¢, ¢,¢’ € Zc. We
call (p,c|c,d) € T* x T2 x I* a witness (of the inequivalence of C and C), iff

N(p-c-d)#N(p-c-d),
where N (W) denotes N8 (qo,W)) defined by & (g,aw) = & (d(q,a),w)).

Witnesses form a middle-congruence. This middle-congruence can be used to
refine the alphabet in the same fashion as the (Nerode) right-congruence is used
to refine the set of states. We have:
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Figure 2. Processing of counterexamples

Lemma 1. Every counterexample exposing non-determinism can be decomposed
into a prefix p, a concrete symbol C and a suffix d, such that

(v(@(p)), cly(a(c)), d)

1S a witness.

Sketch of Proof: Let us now assume a counterexample exposing non-determinism,
i.e., of the kind as indicated by the first two lines of Fig. 2, where the symbols
in each column are assumed to be O-equivalent. Then we proceed as indicated
by the lower part of Fig. 2 by successively replacing the input symbols from left
to right according to the following pattern:

N(y(a(p)) - ¢-d) = N(y(a(p)) - v(a(c)) - d)

until the test fails, which is guaranteed to happen, because the fully transformed
counterexample has a different output symbol. In Fig. 2, e.g., the replacement
of the third counterexample input by its 0-equivalent standard representative
still works, but replacing the fourth input leads to an observable change of the
output (az becomes a'): There exists an index i, such that

(y(a(cr...ci—1)), cily(a(ci)), Cit1...Cm) is a witness. O

The witnesses found by counterexamples will become the key to the semantic
refinement of a and V:

Oold(C) if c ¢ doa(C)
Unew(C) if N'(y(a(p)) - ¢ - d)

=N(y(a(p)) - ¢ - d)
Onew(Yold(Qoid(C))  if €€ 0aid(C) \ Anew(C)

Onew(C) =



Yold () if a7 0od(C)
Ynew(8) =< C if a= dpew(C)
Yoid(Oloig(8))  if @a= 0Oloid(C) Aa# Onew(C)

As indicated by the term partition refinement, the semantic refinement of o only
splits the equivalence class Ogjg(C), and abstracts all other concrete symbols as
before (first line in the definition of Opew(C)). The class Og¢(C) itself splits into

— one subclass for all concrete symbols that behave like € on the witness (second
line in the definition of dpey(C)), and

— a second subclass for all the remaining elements of Ogg(C) (third line in the
definition of Opew(C)).

The definition of Yney arises then straightforwardly as shown in the definition of
Vnew(C). After each such refinement step, which adds an abstract symbol whose
equivalence class is concretely represented by C, the learning procedure continues
by establishing closedness and consistency.

Thinking in terms of partitions and partition refinement is the key for proving
the optimality of our alphabet abstraction algorithm. Let therefore

— Part(>c) and Part(X&) be the set of all partitions over 2¢ and >, respectively,
and,

— for any p,d € 2§, ¢,¢’ € Z¢ let Ref(p v g) : Part(Z*) — Part(2*) be the func-
tion that refines any partition over X& according to a witness (p,c|c’,d) as
described above. Furthermore, let

— a:Xc — Part(3a) be an arbitrary abstraction function, and

— Party be the set of all partitions over 2¢ that refine the partition induced by
=4 and at the same time preserve determinism.

Then we have:

Lemma 2. Let Sys be a system and (p,c|c’,d) be a witness. Then being an upper
bound for Party C Part(Xc) is invariant under the application of Ref ;v q)-

Proof: Let P be an upper bound for Party and Q be an arbitrary element of Party.
Then we can prove the required Q C Ref(p,c\d,d)(P) by contraposition as follows:
(z1,22) ¢ Ref (g gy (P) implies (z1,2) ¢ Q.

Let therefore 21,2, € Z¢ with (z1,2) ¢ Ref (o o) (P) and w.Lo.g. with (z1,2) € P.
This means that z; and z» must have been split by Ref , ov 4) and therefore that
w.lo.g. N(p-z-d)=N(p-c'-d) and N (p-z-d) #MN(p-c'-d). Thus N'(p-z -d) #
N(p-z2-d). Thus, together with Q € Party we obtain as desired (z1,22) ¢ Q. O

This theorem obviously implies that every abstraction constructed during our
alphabet abstraction refinement procedure induces an upper bound for Party.

If we now assume that we have a perfect equivalence oracle (which is standard
for classical automata learning), we can combine this result with the correctness
result for classical learning in order to obtain:



Theorem 1 (Optimality relative to perfect Equivalence Oracles). Let
Sys be a deterministic system and O an abstraction on the input alphabet of Sys.
Moreover, let us assume that we have a perfect equivalence oracle. Then we have
upon termination of our refinement enhanced learning procedure:

— The last alphabet refinement ended at the coarsest refinement of A that pre-
serves determinism.

— The learned automaton is behaviorally indistinguishable from Sys under the
computed refined abstraction of the alphabet. In particular it can be used to
reliably predict the Sys output for any (abstract) input word.

This result shows that our elaboration of automata learning is very much in
line with the also partition refinement-based approach of L*. Like there, the cor-
rectness depends on a reliable equivalence oracle or counterexample finder. In
addition, all the intermediately constructed hypotheses are optimal in the sense
that they concisely reflect all the considered observations: they are the state
minimal automata (here Mealy machines) labeled with elements of a coarsest
alphabet abstraction which are consistent will all the currently available obser-
vations. The formal proof of this statement follows a straightforward pattern for
partition refinement algorithms. For many practical applications, like e.g., test
generation, regression testing, or (behavioral) specification mining, this optimal-
ity result is both very valuable, and the best one could expect.

Similar to classical learning, where the complexity is always considered rel-
ative to the number of states of the final system Q, we also considered the
complexity relative to the final size of the abstract alphabet ZL. As every round
introduced by handling a counterexample either introduces a new state or a re-
finement of the alphabet, one can easily conclude that the algorithm terminates
after at most |Q| + |ZL| rounds, which is at the same time the maximum number
of required equivalence queries.

Membership queries are required to complete the observation table and to
treat counterexamples. The treatment of counterexamples will cause at most one
membership query for every of its steps. Thus, the number of membership queries
for treating counterexamples can be estimated by m - (|Q| + |ZI\|)), where mis
the maximal length of a counterexample. The size of the final observation table
can be estimated by O(|Z/';| - |Q%) , cf. [24,25]. Accordingly, the total number of
required membership queries is at most |Z;| Q% + m-(|Q|+ |ZI\|) In summary
we obtain:

Theorem 2 (Complexity). Assuming that equivalence and membership queries
both have some constant cost, our new learning algorithm has an overall com-

plexity of: O(|Zal-|Q* + M- (|Q|+[Zal))-

Under the very reasonable assumption that the maximum length of the coun-
terexamples m does not grow faster than the number of states |Q|, our complexity
result reduces to O(|Za| - |Q[%), exactly the result known for classical automata
learning. It should be noted, however, that this result, besides suppressing con-
stant factors as usual in classical complexity theory, is also based on the as-
sumption of constant time membership and equivalence oracles. Having in mind



enum {msg,recv} event; // events to occur

pdu p, ack; // pdus
packet buffer = O; // incoming data
seq_nr expect = 0; // next expected seq. nr
while (true) {
wait_for_event (&event) ; // wait for event
switch (event) {
msg:
from_lower_layer (&p); // read new message
if (buffer==0 && // if buf empty and
(p.seq % 2 == expect % 2)) { // and seq matches
buffer = p.data;
expect++; // increment exp. seq. nr
indicate_to_upper_layer(); // indicate new data
}
break;
recv:
if (buffer==0) break; // skip if buffer emtpy
data_to_upper_layer (&buffer) ; // forward data
ack.seq = (expect-1) % 2; // ack. delivery
to_lower_layer(&ack) ;
break;
}

Figure 3. Pseudocode of protocol entity

that equivalence oracles may not be realizable at all in practice, this might look
quite unrealistic. Experiences made in the context of the ZULU challenge [13]
though suggest that often equivalence oracles may be substitutable by fast coun-
terexample finders. In fact, we were able to reduce the effort for realizing such
a counterexample finder to very few membership queries [19]. This shows the
potential of practical approaches and heuristics and it was one of the motivat-
ing observations that led us to founding the RERS initiative for experimental
automata learning [9].

It should also be noted that the termination of our algorithm does not necessarily
require 2Zc to be finite or Sys to be regular: It is sufficient that there exists a
regular deterministic abstraction of Sys, as is illustrated in the next section.

4 An example run of the algorithm

In this section, we will apply the method for abstraction refinement to a basic
example to illustrate the integration with classical automata learning for Mealy
machines (cf. [20,25]). The pseudo code for our example is given in Fig. 3. It
specifies a protocol entity that to the next upper layer provides primitives to
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Figure 4. Observation Table and hypothesis at the end of the first learning
phase

receive and indicate messages and to the next lower layer exposes primitives
to receive messages and to send acknowledgements. The component internally
uses an continually increasing Integer variable to keep track of sequence numbers
assigned to messages. Due to the counter, this system has infinitely many states
even if we abstract from the content of the messages. We will show, how our
algorithm refines the input alphabet just enough to reveal its Alternating Bit
Protocol like stop-and-go behavior, which is regular.

Initially we assume an abstraction that has two concrete representative el-
ements msg(0,d) and recv, where msg and recv denote two different primitives,
and d some concrete instantiation of data. The abstraction refinement algorithm
then is assumed to be able to partition the set of all possible inputs to the system
according to this abstraction.

The learning algorithm will use an Observation Table and initialize the set of
distinguishing suffixes D as {msg(0,d),recv}, the set of access sequences S as {€}
and the set of continuations SA accordingly. During the first round of learning the
algorithm will find two additional access sequences msg(0,d) and msg(0,d)recv.
Fig. 4 shows the resulting observation table and the resulting abstract hypothesis.
Now, let the three-lettered word msg(72,d’) recv msg(73,d”) be the counterex-
ample that is provided by the equivalence oracle. We first apply the current
abstraction component-wisely to the counterexample. This results in the ab-
stract word msg recv msg, which will be concretized to msg(0,d) recv msg(0,d).
The original counterexample and its representative will, when run on the system,
lead to different outputs:

ind ack(0) ind
ind ack(0) —

msg(72,d") recv msg(73,d")
msg(0,d) recv msg(0,d)

At this point classic automata learning and a static abstraction would fail. The
too coarse abstraction produces a conflict in observations that would be inter-
preted as result of inherent non-deterministic behavior or without interpreta-
tion simply as a failure of the experimental setup. Here, the proposed abstrac-
tion refinement method comes into play. The corresponding detailed analysis
of the counterexample is shown in Fig. 5. The prefixes of the counterexample



candidate reaction processing
msg(72,d’) recv msg(73,d”)[ind ack(0) ind|-
msg(0,d) recv msg(73,d”)|ind ack(0) ind|replace msg(72,d’) by y(a(msg(72,d’))
msg(0,d) recv msg(73,d”)|ind ack(0) ind|replace recv by y(a(recv)

msg(0,d) recv msg(0,d) |ind ack(0) - |[replace msg(73,d”) by y(a(msg(73,d”))

—

Figure 5. Treatment of a counterexample

will component-wisely (one symbol at time) replaced by their according repre-
sentative elements. The resulting word is then executed on the system. At one
point the system’s behavior will switch from producing the same output as for
the original counterexample to producing different output. In this case replacing
msg(73,d”) will result in a different (conflicting) observation. We thus use the
transformed prefix and the original element at the current position of the coun-
terexample to refine the abstraction on the alphabet. The abstract symbol msg
will be split into the abstract symbols msg0 and msgl. The witness revealing the
difference is (msg(0,d) recv, msg(0,d)|msg(73,d"), €).

After processing the counterexample is completed, the newly found represen-
tative element is passed to the learning algorithm as a new alphabet symbol.
Assuming the learning algorithm will use this symbol only to extend the set of
continuations SA and not in the set D as well (which is sufficient), the learning
algorithm will after a second round terminate with a hypothesis that is equiv-
alent to the behavior of the actual system. The resulting observation table and
hypothesis are shown in Fig. 6.

5 Conclusion

We have presented an on-the-fly method for refining a given abstraction to au-
tomatically regain a deterministic behavior, a must for active learning. With
this method detected non-determinism does no longer lead to failure, but to a
dynamic abstraction refinement. Like automata learning itself, this method is

- msg(0,d) recv

€ ind -

msg(0,d) - ack(0) recv msg0
msg(0,d) recv - - msgl 50 /ind msgl
msg(0,d) recv msg(73,d”) - ack(1) msg0/in

recv ind -

msg(73,d”) ind -

msg(0,d) msg(0,d) - ack(0)

mse(0.d) msg(73,d") ) ack(0) recv/ack(1) recv/ack(0)
msg(0,d) recv msg(0,d) - -

msg(0,d) recv recv - -

msg(0,d) recv msg(73,d”) msg(0,d) |- ack(1) .

msg(0,d) recv msg(73,d”) recv ind - msg0 msgl/ind msg0
msg(0,d) recv msg(73,d”) msg(73,d”)|- ack(1) msgl recv

Figure 6. Observation Table and hypothesis after termination



in general neither sound nor complete, but it also enjoys similar convergence
properties as long as the concrete (not necessarily finite) system itself behaves
deterministically. From a practical perspective, our method allows users to ‘ex-
perimentally’ try abstractions and to let the algorithm care for the determinism
requirement.

Our experience with a prototypical implementation of the enhanced learning
algorithm is quite promising. We applied it, e.g., to the case study discussed in
[1]. While Aarts et al. used a priori knowledge and hand tailored an abstraction
in their case study in several iterations, we could simply provide a far too coarse
initial abstraction, which was then automatically refined by our algorithm to
terminate with the same result.

References

1. Fides Aarts, Julien Schmaltz, and Fritz Vaandrager. Inference and abstraction
of the biometric passport. In 4th International Symposium On Leveraging Ap-
plications of Formal Methods, Verification and Validation 18-20 October 2010 -
Amirandes, Heraclion, Crete, LNCS, 2010.

2. Rajeev Alur, Pavol Cerny, P. Madhusudan, and Wonhong Nam. Synthesis of
interface specifications for java classes. In Jens Palsberg and Martin Abadi, editors,
POPL, pages 98-109. ACM, 2005.

3. Dana Angluin. Learning regular sets from queries and counterexamples. Informa-
tion and Computation, 2(75):87-106, 1987.

4. José L. Balcéazar, Josep Diaz, and Ricard Gavalda. Algorithms for learning finite
automata from queries: A unified view. In Advances in Algorithms, Languages,
and Complezity, pages 53—-72, 1997.

5. Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference for state
machines with parameters. In Proc. of#lth Int. Conf. on Fundamental Approaches
to Software Engineering (FASE ’06), volume 3922 of Lecture Notes in Computer
Science, pages 107-121. Springer, 2006.

6. Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference for state
machines using domains with equality tests. In Proc. of #10 Int. Conf. on Funda-
mental Approaches to Software Engineering (FASE 08), volume 4961 of Lecture
Notes in Computer Science, pages 317-331. Springer, 2008.

7. Therese Bohlin and Bengt Jonsson. Regular inference for communication proto-
col entities. Technical report, Department of Information Technology, Uppsala
University, Schweden, 2009.

8. Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexan-
der Pretschner. Model-Based Testing of Reactive Systems:, volume 3472 of Lecture
Notes in Computer Science. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2005.

9. TU Dortmund Chair of Programming Systems, Department of Computer Science.
RERS - A Challenge In Active Learning. http://leo.cs.tu-dortmund.de:8100/.
Version from 20.06.2010.

10. Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J.
ACM, 50(5):752-794, 2003.

11. E.M. Clarke, O. Grumberg, and D.A. Peled. Model checking. Springer, 1999.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu. Learn-
ing assumptions for compositional verification. In TACAS, pages 331-346, 2003.
David Combe, Colin de la Higuera, Jean-Christophe Janodet, and Myrtille
Ponge. Zulu - Active learning from queries competition. http://labh-curien.
univ-st-etienne.fr/zulu/index.php. Version from 01.08.2010.

Mihaela Gheorghiu Bobaru, Corina S. Pasareanu, and Dimitra Giannakopoulou.
Automated assume-guarantee reasoning by abstraction refinement. In CAV ’08:
Proceedings of the 20th international conference on Computer Aided Verification,
pages 135-148, Berlin, Heidelberg, 2008. Springer-Verlag.

Olga Grinchtein, Bengt Jonsson, and Paul Pettersson. Inference of event-recording
automata using timed decision trees. In CONCUR, pages 435-449, 2006.

A. Hagerer, H. Hungar, O. Niese, and B. Steffen. Model generation by moderated
regular extrapolation. Lecture notes in computer science, pages 80-95, 2002.

A. Hagerer, T. Margaria, O. Niese, B. Steffen, G. Brune, and H.D. Ide. Efficient
regression testing of CTI-systems: Testing a complex call-center solution. Annual
review of communication, Int. Engineering Consortium (IEC), 55:1033-1040, 2001.
Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy
abstraction. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 5870, New York, NY, USA,
2002. ACM.

Falk Howar, Bernhard Steffen, and Maik Merten. From zulu to rers: Lessons learned
in the zulu challenge. In 4th International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation 18-20 October 2010 - Amirandes,
Heraclion, Crete, 2010.

Tiziana Margaria, Oliver Niese, Harald Raffelt, and Bernhard Steffen. Efficient
test-based model generation for legacy reactive systems. In HLDVT ’04: Proceed-
ings of the High-Level Design Validation and Test Workshop, 2004. Ninth IEEE
International, pages 95—100, Washington, DC, USA, 2004. IEEE Computer Society.
A. Nerode. Linear Automaton Transformations. Proceedings of the American
Mathematical Society, 9(4):541-544, 1958.

Harald Raffelt, Tiziana Margaria, Bernhard Steffen, and Maik Merten. Hybrid
test of web applications with webtest. In Proc. of the 2008 Workshop on Testing,
analysis, and verification of web services and applications (TAV-WEB ’08), pages
1-7, New York, NY, USA, 2008. ACM.

Harald Raffelt, Bernhard Steffen, Therese Berg, and Tiziana Margaria. Learnlib: a
framework for extrapolating behavioral models. International Journal on Software
Tools for Technology Transfer (STTT), 11(5):393—-407, 2009.

Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing
sequences. Inf. Comput., 103(2):299-347, 1993.

Muzammil Shahbaz and Roland Groz. Inferring mealy machines. In Ana Cavalcanti
and Dennis Dams, editors, FM, volume 5850 of Lecture Notes in Computer Science,
pages 207-222. Springer, 2009.

Muzammil Shahbaz, Keqin Li, and Roland Groz. Learning parameterized state
machine model for integration testing. In COMPSAC ’07: Proceedings of the 31st
Annual International Computer Software and Applications Conference - Vol. 2-
(COMPSAC 2007), pages 755760, Washington, DC, USA, 2007. IEEE Computer
Society.



